Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides.

Identifieur interne : 000257 ( Main/Exploration ); précédent : 000256; suivant : 000258

Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides.

Auteurs : Ashwinie A. Ukuwela [Australie] ; Ashley I. Bush [Australie] ; Anthony G. Wedd [Australie] ; Zhiguang Xiao [Australie]

Source :

RBID : pubmed:29675162

Abstract

Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol-disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidation of protein dithiols P(SH)2 and reduction of protein disulfides P(SS) catalyzed by Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The metal-binding domain HMA4n(SH)2 was chosen as substrate as it contains a solvent-exposed CysCys motif. Quenching of the reactions with excess iodoacetamide followed by protein speciation analysis via ESI-MS allowed interception and characterization of both substrate and enzyme intermediates. The enzymes shuttle between three catalytically-competent forms (Grx(SH)(S-), Grx(SH)(SSG) and Grx(SS)) and employ conserved parallel monothiol and dithiol mechanisms. Experiments with dithiol and monothiol versions of both Grx enzymes demonstrate which monothiol (plus GSSG or GSH) or dithiol pathways dominate a specific oxidation or reduction reaction. Grxs are shown to be a class of versatile enzymes with diverse catalytic functions that are driven by specific interactions with GSSG/GSH.

DOI: 10.1039/c7sc04416j
PubMed: 29675162
PubMed Central: PMC5885593


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides.</title>
<author>
<name sortKey="Ukuwela, Ashwinie A" sort="Ukuwela, Ashwinie A" uniqKey="Ukuwela A" first="Ashwinie A" last="Ukuwela">Ashwinie A. Ukuwela</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 </wicri:regionArea>
<wicri:noRegion>Victoria 3010 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bush, Ashley I" sort="Bush, Ashley I" uniqKey="Bush A" first="Ashley I" last="Bush">Ashley I. Bush</name>
<affiliation wicri:level="1">
<nlm:affiliation>Melbourne Dementia Research Centre , Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3052 , Australia . Email: zhiguang.xiao@florey.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Wedd, Anthony G" sort="Wedd, Anthony G" uniqKey="Wedd A" first="Anthony G" last="Wedd">Anthony G. Wedd</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 </wicri:regionArea>
<wicri:noRegion>Victoria 3010 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Zhiguang" sort="Xiao, Zhiguang" uniqKey="Xiao Z" first="Zhiguang" last="Xiao">Zhiguang Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 </wicri:regionArea>
<wicri:noRegion>Victoria 3010 </wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Melbourne Dementia Research Centre , Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3052 , Australia . Email: zhiguang.xiao@florey.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29675162</idno>
<idno type="pmid">29675162</idno>
<idno type="doi">10.1039/c7sc04416j</idno>
<idno type="pmc">PMC5885593</idno>
<idno type="wicri:Area/Main/Corpus">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000248</idno>
<idno type="wicri:Area/Main/Curation">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000248</idno>
<idno type="wicri:Area/Main/Exploration">000248</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides.</title>
<author>
<name sortKey="Ukuwela, Ashwinie A" sort="Ukuwela, Ashwinie A" uniqKey="Ukuwela A" first="Ashwinie A" last="Ukuwela">Ashwinie A. Ukuwela</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 </wicri:regionArea>
<wicri:noRegion>Victoria 3010 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bush, Ashley I" sort="Bush, Ashley I" uniqKey="Bush A" first="Ashley I" last="Bush">Ashley I. Bush</name>
<affiliation wicri:level="1">
<nlm:affiliation>Melbourne Dementia Research Centre , Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3052 , Australia . Email: zhiguang.xiao@florey.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Wedd, Anthony G" sort="Wedd, Anthony G" uniqKey="Wedd A" first="Anthony G" last="Wedd">Anthony G. Wedd</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 </wicri:regionArea>
<wicri:noRegion>Victoria 3010 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Zhiguang" sort="Xiao, Zhiguang" uniqKey="Xiao Z" first="Zhiguang" last="Xiao">Zhiguang Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 </wicri:regionArea>
<wicri:noRegion>Victoria 3010 </wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Melbourne Dementia Research Centre , Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3052 , Australia . Email: zhiguang.xiao@florey.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemical science</title>
<idno type="ISSN">2041-6520</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol-disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidation of protein dithiols P(SH)
<sub>2</sub>
and reduction of protein disulfides P(SS) catalyzed by
<i>Homo sapiens</i>
HsGrx1 and
<i>Escherichia coli</i>
EcGrx1. The metal-binding domain HMA4n(SH)
<sub>2</sub>
was chosen as substrate as it contains a solvent-exposed CysCys motif. Quenching of the reactions with excess iodoacetamide followed by protein speciation analysis
<i>via</i>
ESI-MS allowed interception and characterization of both substrate and enzyme intermediates. The enzymes shuttle between three catalytically-competent forms (Grx(SH)(S
<sup>-</sup>
), Grx(SH)(SSG) and Grx(SS)) and employ conserved parallel monothiol and dithiol mechanisms. Experiments with dithiol and monothiol versions of both Grx enzymes demonstrate which monothiol (plus GSSG or GSH) or dithiol pathways dominate a specific oxidation or reduction reaction. Grxs are shown to be a class of versatile enzymes with diverse catalytic functions that are driven by specific interactions with GSSG/GSH.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29675162</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2041-6520</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>Feb</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Chemical science</Title>
<ISOAbbreviation>Chem Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides.</ArticleTitle>
<Pagination>
<MedlinePgn>1173-1183</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c7sc04416j</ELocationID>
<Abstract>
<AbstractText>Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol-disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidation of protein dithiols P(SH)
<sub>2</sub>
and reduction of protein disulfides P(SS) catalyzed by
<i>Homo sapiens</i>
HsGrx1 and
<i>Escherichia coli</i>
EcGrx1. The metal-binding domain HMA4n(SH)
<sub>2</sub>
was chosen as substrate as it contains a solvent-exposed CysCys motif. Quenching of the reactions with excess iodoacetamide followed by protein speciation analysis
<i>via</i>
ESI-MS allowed interception and characterization of both substrate and enzyme intermediates. The enzymes shuttle between three catalytically-competent forms (Grx(SH)(S
<sup>-</sup>
), Grx(SH)(SSG) and Grx(SS)) and employ conserved parallel monothiol and dithiol mechanisms. Experiments with dithiol and monothiol versions of both Grx enzymes demonstrate which monothiol (plus GSSG or GSH) or dithiol pathways dominate a specific oxidation or reduction reaction. Grxs are shown to be a class of versatile enzymes with diverse catalytic functions that are driven by specific interactions with GSSG/GSH.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ukuwela</LastName>
<ForeName>Ashwinie A</ForeName>
<Initials>AA</Initials>
<Identifier Source="ORCID">0000-0002-9974-1436</Identifier>
<AffiliationInfo>
<Affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bush</LastName>
<ForeName>Ashley I</ForeName>
<Initials>AI</Initials>
<Identifier Source="ORCID">0000-0001-8259-9069</Identifier>
<AffiliationInfo>
<Affiliation>Melbourne Dementia Research Centre , Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3052 , Australia . Email: zhiguang.xiao@florey.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wedd</LastName>
<ForeName>Anthony G</ForeName>
<Initials>AG</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Zhiguang</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0001-6908-8897</Identifier>
<AffiliationInfo>
<Affiliation>School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3010 , Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Melbourne Dementia Research Centre , Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3052 , Australia . Email: zhiguang.xiao@florey.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chem Sci</MedlineTA>
<NlmUniqueID>101545951</NlmUniqueID>
<ISSNLinking>2041-6520</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29675162</ArticleId>
<ArticleId IdType="doi">10.1039/c7sc04416j</ArticleId>
<ArticleId IdType="pii">c7sc04416j</ArticleId>
<ArticleId IdType="pmc">PMC5885593</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Metallomics. 2014 Apr;6(4):793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Dec 15;83(6):947-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Dec 15;48(49):11640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19883117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 1;19(13):1539-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23397885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Sep 15;446(3):333-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 11;285(24):18423-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20233716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 Feb 1;58(2):376-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):21099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Nov 8;288(45):32241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24062305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Nov 10;255(21):10261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7000775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2017 Aug;173:21-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28478310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Feb 13;386(1):60-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19073194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3217-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2011 Jan;45(1):3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20815784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Mar;90(4-5):453-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26797794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Nov 20;27(15):1127-1129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28874053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 22;271(12):6736-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 19;274(12):7695-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10075658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Nov 20;27(15):1130-1161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28540740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jun;72(6):2305-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1094461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Aug 15;446(1):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22651090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2013 Mar-Apr;48(2):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1623-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2016;50(2):206-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26573728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 May 1;24(13):680-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25867539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Apr 04;8:14835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28374771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Nov 14;45(45):13409-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17087494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2015 Jul 1;6(7):3788-3796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29218148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Nov 20;27(15):1235-1251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28537421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2014 Jul 17;5:168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2017 Nov 9;474(22):3799-3815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28963348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Sep 10;292(1):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493864</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Ukuwela, Ashwinie A" sort="Ukuwela, Ashwinie A" uniqKey="Ukuwela A" first="Ashwinie A" last="Ukuwela">Ashwinie A. Ukuwela</name>
</noRegion>
<name sortKey="Bush, Ashley I" sort="Bush, Ashley I" uniqKey="Bush A" first="Ashley I" last="Bush">Ashley I. Bush</name>
<name sortKey="Wedd, Anthony G" sort="Wedd, Anthony G" uniqKey="Wedd A" first="Anthony G" last="Wedd">Anthony G. Wedd</name>
<name sortKey="Xiao, Zhiguang" sort="Xiao, Zhiguang" uniqKey="Xiao Z" first="Zhiguang" last="Xiao">Zhiguang Xiao</name>
<name sortKey="Xiao, Zhiguang" sort="Xiao, Zhiguang" uniqKey="Xiao Z" first="Zhiguang" last="Xiao">Zhiguang Xiao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000257 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000257 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29675162
   |texte=   Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29675162" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020